1T 2025 vår LK20 LØSNING: Forskjell mellom sideversjoner
Fra Matematikk.net
Linje 18: | Linje 18: | ||
Vertikal asymptote : $2x+1 =0 \Rightarrow 2x =-1 \Rightarrow x= - \frac12 $ | Vertikal asymptote : $2x+1 =0 \Rightarrow 2x =-1 \Rightarrow x= - \frac12 $ | ||
Horisontal asymptote: $y =\lim\limits_{x \to \infty} f(x)=\lim\limits_{x \to \infty} \frac{12x-3}{2x+1} =\lim\limits_{x \to \infty} \frac{\frac{12x}{x}- \frac{3}{x}}{\frac{2x}{x} + \frac {1}{x}} | Horisontal asymptote: $y =\lim\limits_{x \to \infty} f(x)=\lim\limits_{x \to \infty} \frac{12x-3}{2x+1} =\lim\limits_{x \to \infty} \frac{\frac{12x}{x}- \frac{3}{x}}{\frac{2x}{x} + \frac {1}{x}} = \lim\limits_{x \to \infty} \frac{12- \frac{3}{x}}{2 + \frac {1}{x}} = 6$ | ||
====Oppgave 2==== | ====Oppgave 2==== |
Sideversjonen fra 5. jun. 2025 kl. 04:24
Diskusjon av oppgaven på Matteprat
Løsningsforslag laget av SveinR
Løsning fra OpenMathBooks prosjektet
DEL EN
Oppgave 1
\[f(x) = \frac{12x-3}{2x+1}\]
Vertikal asymptote : $2x+1 =0 \Rightarrow 2x =-1 \Rightarrow x= - \frac12 $
Horisontal asymptote: $y =\lim\limits_{x \to \infty} f(x)=\lim\limits_{x \to \infty} \frac{12x-3}{2x+1} =\lim\limits_{x \to \infty} \frac{\frac{12x}{x}- \frac{3}{x}}{\frac{2x}{x} + \frac {1}{x}} = \lim\limits_{x \to \infty} \frac{12- \frac{3}{x}}{2 + \frac {1}{x}} = 6$